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The w*-algebra in the standard representation is used to define a vector space
for representations of Lie algebras. The PoincareÂgroup is studied as in thermofield
dynamics (TFD) with the result that the notion of phase space is introduced from
the structure of the PoincareÂ±Lie algebra. The basis of quantum-field kinetic
theory is analyzed in association with TFD. As a particular case, the JuÈ ttner
distribution is derived.

Recently, several physical and algebraic aspects of thermal theories have

been studied through the formalism known as thermofield dynamics (TFD),

proposed by Takahashi and Umezawa (1975) and developed, for instance,

by Umezawa et al. (1982) and Umezawa (1993) as an operator approach to

treat thermal phenomena. TFD is defined via two ingredients: a Bogoliubov
transformation, introducing thermal effects via a vacuum correlation, and a

doubling in the dynamical variables.

Such a TFD structure was first associated with c*-algebra by Ojima

(1981), motived by the derivation of the so-called KMS (Kubo, Martin,

Schwinger) equilibrium conditions. On the other side, different aspects of

(thermal) symmetries have been analyzed and explored as a consequence of
the operator nature of TFD. As an instance, Umezawa (1993) and Chu and

Umezawa (1994) showed that the generators of the thermal Bogoliubov
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transformation are associated with su(1,1) for bosons and su(2) for fermions.

Furthermore , Celeghini et al. (1991), Song et al. (1993), Ioro and Vitiello

(1994), Srivastava et al. (1995), and Vitiello (1996) explored elements of q-
groups in connection with the notion of the TFD-dual variables, and the

effect of temperature has been studied as deformations in the Weyl±

Heisenberg algebra. In this scenario of q-groups, Kopf et al. (1997) pointed

out that the notion of a bialgebra is a structural constituent for thermal theories.

Using the TFD Hilbert space as the space of representation for Lie

groups, we have analyzed the Galilei and PoincareÂsymmetries (see, e.g.,
Santana and Khanna, 1995; Santana et al., 1996; da Silva et al., 1997). As

a result the TFD basic equations have been derived through a study of Lie

algebras; a physical interpretation of the dual variables arising in thermal

field theories has been introduced; a definition of a Klein±Gordon-like Liou-

ville von Neumann equation has been deduced; and the development of the

classical counterpart of TFD has been proposed. Starting from the notion of
w*-algebras, we have shown (see, e.g., Neto et al., 1996) how this Lie-

algebra method (we call it here *-Lie algebra) can formally emerge in thermal

theories, and in this context the phase-space Wigner function has been derived

as a matter of representations of the Galilei symmetries. So this approach

can avoid the common difficulties with the available formalisms used to
introduce the concept of Wigner functions in general situations, as pointed

out by de Groot et al. (1980) and Cabo and Shabad (1987) in connection

with the nontrivial generalization of the Weyl transformation to deal with

relativistic systems. Beyond that, the *-Lie algebra formalism can be seen

as an alternate generalization to the studies of Grelland (1984, 1993), based

on the standard representation of w*-algebras, treating the classical limit
of relativistic quantum systems and reducible Dirac representations for the

classical and quantum theory. One benefit of such an approach has been a

profitable way to study quantum stochasticity, as set forth by Benatti et al.
(1991) and Prigogine et al. (1990), and as emphasized by Grelland (1993).

In this paper, the preliminary results presented by Santana and Khanna

(1995) and Neto et al. (1996) are developed, by introducing the relativistic
quantum-kinetic theory based on the analysis of representations of the *-

PoincareÂalgebra and in association with the TFD formalism. In the steady

thermal case, in particular, we derive the JuÈ ttner distribution, and we show

how the concept of relativistic quantum phase space arises from an analysis

of the representations of PoincareÂsymmetries, with two (nonordinary ) remark-

able aspects: simplicity and covariance. To proceed further, we first introduce
the basic elements of representations of *-Lie algebras.

Let (*, p (!)) be a faithful realization of !, a w*-algebra, where * is

a Hilbert space. p (!): * ® * is, then a *-isomorphism of ! by linear

operators in *. Taking | j & P * to be normalized, it follows that ^ j | p (A ) | j & ,
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for every A P !, defines a state over ! denoted by v j (A ) 5 ^ j | p (A ) | j & .
Such states are called vector states. As shown by Gelfand, Naimark, and

Segal (GNS), the inverse is also true, i.e., every state v of a w*-algebra !
admits a vector representation | j v & P * such that w (A ) [ ^ j v | p v (A ) | j v & .
This realization is called the GNS construction (see, e.g., Takesaki, 1970;

Emch, 1972; Bratteli and Robison, 1979). In order to emphasize the depen-

dence of the representation space and of the operators on the state v in !,

it is usual to denote such a realization by (* v , p v (!)).

The standard (Tomita±Takesaki) representation is a class of representa-
tions defined as follows. Let s : * v ® * v be a conjugation in * v , that is,

s is an antilinear isometry such that s 2 5 1. (* v , p v (!)) is a Tomita±Takesaki

representation of the w*-algebra ! iff s p v (!) s 5 p Ä v (!) defines a *-

antiisomorphism on the linear operators. It follows that (* v , p Ä v (!)) is a

faithful antirealization of !. Notice that p Ä v (!) is the commutant of p v (!),

that is, [ p v (!), p Ä v (!) | 5 0. In this representation, the representative vectors
of the states are invariant under s , that is, s | j v & 5 | j v & . For the sake of

simplicity, the elements of p v (!) will be denoted by A, and those of p Ä v (!)

by AÄ .
The properties of the *-automorphisms in the w*-algebra ! can be

defined through unitary operators, say U ( t ), such that [U ( t ), s ] 5 0. Since
unitary operators U ( t ) can be written as U ( t ) 5 exp(i t AÃ), where AÃis a

transformation (symmetry) generator, and considering that U ( t ) commutes

with s , it follows that s AÃs 5 2 AÃ. Therefore, AÃcan be written as an odd

polynomial function of A 2 AÄ , i.e.,

AÃ5 f (A 2 AÄ ) 5 o
`

n 5 0
(A 2 AÄ )2n 1 1 (1)

Now let us consider * v as the space of representations for Lie algebras.

First, we observe that the two classes of elements of * v , A and AÄ , can be

replaced, without loss of generality, by the two classes of operators A and

AÃ. The hat operators naturally describe symmetries. However, we need to
describe the role played by the A (no-hat) operators. In the context of space±

time groups, we can take the no-hat operators as the observables describing

the properties of the dynamical system.

Let l 5 {ai , i 5 1, 2, 3, . . .} be a Lie algebra over the (real) field R,

of a Lie group +, characterized by the algebraic relations ai L aj 5 Cijkak ,
where Cijk P R are the structure constants and L is the Lie product. Consider-

ing the Tomita±Takesaki space * v as the space of representations for l, then

we can write

[AÃi , AÃj] 5 iCijkAÃk (2)

We have, however, ancillary commutation relations, specifying (i) the way
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the generators can change the observables, and (ii) the Abelian (or non-

Abelian) nature of the observables in regard to the measurement process.

Conditions (i) and (ii) respectively, can be expressed in general by

[AÃi , Aj] 5 iDijkAk (3)

[Ai , Aj] 5 iEijkAk (4)

By doing so, we split the twofold structure of * v , for studying a Lie symmetry.
The resulting algebra based on Eqs. (2)±(4) will be referred to here as a *-

Lie algebra, and will be denoted by *-l.
Some aspects of *-l are worthy of comment. (a) To each generator AÃi

there is an associated observable Ai. This is defined by the algebraic nature

of the standard representation, and is also compatible with the physics. (b)

If Cijk 5 Dijk 5 E ijk, then we have a reducible Tomita±Takesaki structure as
studied by Santana and Khanna (1995) and Neto et al. (1996). (c) If Eijk 5
0, then the representation can describe a classical system, since by construc-

tion, all the observables commute with each other, as developed by Santana

et al. (1996) and da Silva et al. (1997).

Here we explore the simplest situation for hat-variables in Eq. (1), in

which we define

AÃ5 A 2 AÄ (5)

That is, AÃis an element of the set p Ãv (!) 5 p v (!) 2 p Ãv (!). Let us then
apply this representation to study the *-PoincareÂalgebra *-p, which is given

by the following commutation relations:

[M m n , P s ] 5 i (g n s P m 2 g s m P n ) (6)

[P m , P n ] 5 0 (7)

[M m n , M s r ] 5 2 i (g m r M n s 2 g n r M m s 1 g m s M r n 2 g n s M r m ) (8)

[MÃm n , P s ] 5 [M m n , PÃs ] 5 i (g n s P m 2 g s m P n ) (9)

[PÃm , P n ] 5 0 (10)

[MÃm n , M s r ] 5 2 i (g m r M n s 2 g n r M m s 1 g m s M r n 2 g n s M r m ) (11)

[MÃm n , PÃs ] 5 i (g n s PÃm 2 g s m PÃn ) (12)

[PÃm , PÃn ] 5 0 (13)

[MÃm n , MÃs r ] 5 2 i (g m r MÃn s 2 g n r MÃm s 1 g m s MÃr n 2 g n s MÃr m ) (14)

where M m n stands for rotations and P m for translations. The metric tensor is

such that diag(g m n ) 5 (1, 2 1, 2 1, 2 1), and g m n 5 0 for m Þ n ; m , n 5 0,

1, 2, 3. This algebra can be written in a shorthand notation as
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[M, P] 5 iP, [MÃ, M ] 5 iM

[P, P] 5 0, [MÃ, PÃ] 5 iPÃ

[M, M ] 5 iM, [MÃ, MÃ] 5 iM

[MÃ, P] 5 iP, [PÃ, PÃ] 5 0

[PÃ, P] 5 0

Defining the tilde variables PÄ 5 P 2 PÃand MÄ 5 M 2 MÃby using Eq. (5),

we have for the nonnull commutation relations

[M, P] 5 iP

[M, M ] 5 iM

[MÄ , PÄ ] 5 2 iPÄ

[MÄ , MÄ ] 5 2 iMÄ

Then, introducing the Pauli±Lubanski matrices as usual,

w m 5
1

2
e m n r s M n s P r

where e m n r s is the Levi-Civita symbol, we have the invariants of *-p

W 5 w m w m (15)

P 2 5 P m P m (16)

WÃ5 2wÃm w m 2 wÃm wÃm (17)

P Ã5 2PÃm P m 2 PÃm PÃm (18)

where

wÃm 5
1

2
e m n r s MÃn s P r 1

1

2
e m n r s M n s PÃr 2

1

2
e m n r s MÃn s PÃr

Notice that the vector

w m 5
1

2
e m n r s MÃn s PÃr

can be used to define the scalar W 5 w m w m , which is not an invariant of *-

p, but rather of the subalgebra of *-p given by Eqs. (12)±(14). Using the

definition of the hat variables, Eq. (5), we find
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WÃ5 (w m w m ) Ù

5 w m w m 2 (w m w m ) ,

5 w m w m 2 wÄ m wÄ m (19)

and, in the same way,

P Ã5 P m P m 2 PÄ m PÄ m (20)

Representations for *-p can be built taking the usual representations for
the PoincareÂgroup as a starting point. In this case, we can write explicitly

for the nontilde variables

[(P 2 2 m 2)]l | C & 5 [(P 2 2 m 2) ^ 1] | C & 5 0 (21)

and for the tilde variables

[(P 2 2 m 2)]r | C & 5 1 ^ [(P 2 2 m 2)] | C & 5 0

where we have used the following convenient notation for (nontilde and tilde)

operators acting on the state | C & :

O 5 O l | C & 5 [O ^ 1] | C & and OÄ 5 O r | C & 5 [1 ^ O] | C &

Considering

| C & 5 | f & ^ ^ f | 5 | f & ^ | f Ä & (22)

with ^ f | f & 5 1, and

(P 2 2 m 2) | f & 5 (M 2 m 2) | f & 5 0 (23)

then we have

Ml | C & 5 ( ^ 1) | C &

5 ( | f & ) ^ f |

^ Mr | C & 5 (1 ^ ) | C &

5 | f & ( ^ f | )

From these results, it follows that

[M l 2 Mr] | C & 5 P Ã| C & 5 0 (24)

Taking Eq. (22), let us multiply Eq. (24) on the right-hand side by | f & ,
that is,

[Ml 2 Mr ] | C & | f & 5 ( | f & ^ f | 2 | f & ^ f | ) | f & 5 0
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Since ^ f ) M ) f & 5 ^ f | f & m 2 and as ^ f | f & 5 1, we derive the Klein±Gordon

equation (23). Using, on the other hand, the bra vector ^ f | , we obtain the

Klein±Gordon equation in the dual Hilbert space obtained from Eq. (24),

^ f ) M ) f & ^ f ) 2 ) f & ^ f ) M ) f & 5 ^ f | (m 2 2 M) 5 0

This result shows that Eq. (24) is a Liouville±von Neumann equation for the

Klein±Gordon field having as the vector state a kind of square root of the

density matrix.

This last aspect can be better understood if we write | C & as

| C & 5 r 1/2 | 1 &

with | 1 & 5 o
n

| n, nÄ & [where the usual TFD notation is being used, as in

Umezawa (1993)]. Then, Eq. (24) reads

[MlÐ Mr] r 1/2 5 0

From this equation we have

[M, r ] 5 [P m P m , r ] 5 0 (25)

where r can be interpreted as the density matrix associated to the Klein±
Gordon field, whose general solution is given by r (P m ). In the following,

our main interest is to take Eq. (25) as a starting point to build the relativistic

quantum kinetic theory.

Consider that Eq. (25) describes the evolution of an ensemble of quantum

particles specified through the density operator r , such that the entropy is

given by

S 5 2 kB Tr r ln r (26)

where kB is the Boltzmann constant. In the stationary case the entropy is an

extremum (see, e.g., Tolman, 1987), that is,

d S 5 0 (27)

under the constraints

Tr( r ) 5 1 (28)

Tr( r N ) 5 ^ N & (29)

Tr( r P n ) 5 ^ P n & (30)

where ^ N & , the macroscopic particle number, and ^ P m & , the macroscopic four-

momentum, are assumed to be constant. Then we obtain as a solution of Eq.

(27) that the density operator is
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r o 5
1

Z
exp F 1

kB

( a n P
n 1 a NN ) G (31)

where

Z 5 exp 1 1 2
a z

kB 2 (32)

and a z , a N , and a n are the Lagrange multipliers attached to the constraints
(28)±(30), respectively. It should be mentioned that r o given by Eq. (31) is

a solution of Eq. (25) assuming that N and P commute with each other.

Using Eq. (31), we derive

kB ln Z 1 a n ^ P n & 1 a N ^ N & 1 S 5 0

With this result, we can obtain a physical interpretation of this approach by
a suitable definition of the Lagrange multipliers a n and a z. Thus we can

assume that

a n 5 2 kB b U n and a N 5 kB m b

where b 5 1/kBT, T is the temperature at the rest frame, m is the chemical

potential, and U n is the macroscopic four-velocity field satisfying the relation

U n U
n 5 1. Therefore, Eq. (31) is given by

r o 5
1

Z
exp[ 2 b (U n P v 2 m N )] (33)

such that the partition function Z is deduced from the normalization of r o.

Now we study the concept of phase space in this approach. Using Eq.

(24), we can write Eq. (25) as

( - m 8 - m 8 2 - m - m ) r (x8, x) 5 0 (34)

Let us introduce the four-operators

-
- x m 5

1

! 2 1 -
- q m 2 p m 2 and

-
- x 8 m 5

1

! 2 1 -
- q m 1 p m 2 (35)

where q m and p m , under a Lorentz transformation, transform as a four-position

and a four-momentum vector, respectively. In this situation, q m and p m can
be used to introduce the notion of a relativistic phase space. In fact, considering

Eq. (35), it is straightforward to show that Eq. (34) is equivalent to

p m -
- q m r (q, p) 5 0 (36)
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This equation can be interpreted as a sort of the collisionless Boltzmann

equation for the one-particle Wigner distribution r (q, p). To establish this

clearly, let us explore the physical meaning of r (q, p). First note that r (q, p)
is in principle a Lorentz scalar. Thus an invariant solution of Eq. (36) can

be written as

r (q, p) 5 # d 4u d ( p n u n )e
2 u ? qg ( p, u) (37)

where g (p, u) is an arbitrary function, which can be used either to prevent

r (q, p) from being divergent, or to specify the microscopic nature of r (q, p).

For instance, consider g ( p, u) in Eq. (37) defined by

g ( p, u) 5 K a ² 1 p 2
1

2
u 2 a 1 p 1

1

2
u 2 L

1 K a ² 1 p 2
1

2
u 2 a 1 p 1

1

2
u 2 L (38)

where a( p) and a ² ( p) [a( p) and a ² ( p)] are the momentum-space operators

for bosons (anti-bosons). Therefore, the microscopic specification of the

operators N and P n in the momentum representation is

N 5 # d 3p

p o [a ² ( p)a (p) 1 a ² ( p)a( p)]

P n 5 # d 3p

p o p n [a ² ( p)a (p) 1 a ² ( p)a( p)]

Let us define the macroscopic current density by

^ J n & 5 # d 4p
1

p o p m r (q, p). (39)

With the operators a( p) and a( p), the field operator c (x) is written as

c (x 5
1

2(2 p )3 # d 3p

p o [e 2 ip ? xa (p) 1 e ip ? xa ² ( p)]

Therefore, after some calculation, Eq. (39) reads

^ J n (x) & 5 i ^ : c ² (x) - n
%

c (x): & (40)

where the dots mean the normal ordering. Equation (40) is the usual definition

for the (thermal) current density, and is used as the starting point to introduce

the relativistic quantum kinetic theory. Then, in this sense, r (q, p) can be
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interpreted as a one-particle Wigner-function density. Moreover, Eq. (38) is

an appropriate choice for g( p, u), providing a physical interpretation for

the theory.
Let us go back to the stationary case, and consider g( p, u) in Eq. (37)

only for bosons, that is,

g( p, u) 5 K a ² ( p 2
1

2
u) a (p 1

1

2
u) L o

5 Tr[ r oa ² ( p 2
1

2
u)a ( p 1

1

2
u)] (41)

In this way, let us write

N 5 # d 3p

p o a ² ( p)a( p)

P m 5 # d 3p

p o p m a ² ( p)a ( p)

Then using Eq. (33) in Eq. (41) and the result [see, for instance, de Groot

et al., 1980)

K a ² 1 p 2
1

2
u 2 a 1 p 1

1

2
u 2 L o

5 K a 1 p 1
1

2
u 2 a ² 1 p 2

1

2
u 2 L o

exp( b m 2 p n U n )

which is derived from the properties of the trace, we get

r o( p) 5
1

exp[ b ( p n U n 2 m )] 2 1

which is the so-called JuÈ ttner distribution.

In short, we have shown how to use the representation of symmetry

groups to derive relativistic statistical mechanics. The aspect of simplicity for

building up the basis of the relativistic quantum kinetic theory is noteworthy in

this formalim. The distribution function r (q, p) arises naturally in a covariant

form, which is not the case in usual approaches. Finally, we point out that
Eq. (36) can be considered as a quantum field equation in phase space, as

is the case of the analysis developed by Santana et al. (1996) and da Silva

et al. (1997) for Galilei symmetries. Then we can study, in this context of

phase space, a Lagrangian formalism to take into account a nonnull colli-
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sionness term in Eq. (36). This analysis, as well as a study of the spinor

representations of the *-PoincareÂalgebra, is in progress.
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